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We study the stability of a flow with a closing shock in a channel, in the case 

when the flow velocity ahead of the shock is nearly sonic and the “quasi-cylin- 
drical ” approximation which was used to analyze the stability in [l, 21 is there- 
fore unsuitable. For this reason we use here the “transonic” approximation which 
takes into account the variation in the intensity of the acoustic waves as they pro- 
pagate along the channel. We neglect the variations in the stationary parameters 
of the flow (which are not equal to the difference M - 1, where lV1 is the Mach 
number) along the channel (from the cress section of the closing shock to the 
cross section of the channel outlet), and of the derivative of the Mach number 
with respect to the longitudinal coordinate. The latter situation occurs, in par- 
ticular, in the vicinity of the minimum section of the Lava1 nozzle, The remain- 
ing formulation of the problem is the same as that given in [2], and includes the 
condition of reflection at the channel out&t. This condition has the form of a 
linear relation connecting the nonsteady perturbation of the left Rlemann inva- 
riant characterizing the reflected acoustic wave, with the perturbations of the 
right Riemann invariant and entropic function which characterize the waves ar- 
riving at the outlet section from the direction of the channel. The ” D -subdivi- 
sion” method [3, 47 is used to construct the region of stability in the plane of the 

reflection coefficients. 

1, Let a steady supersonic flow in a channel&he transverse cross section area of which 

is F = F (x), where 5 is the coordinate measured along the channel axis,contain a 
so-called closing shock situated. at 2: = IJ. Taking the distance between the sectionof 
the shock and the channel outlet as the characteristic length, we find that the outlet sec- 
tion corresponds to z = 1. We reduce the equations to their dimensionless form using, 
as in [Z], the critical magnitudes of the steady flow to the left of the shock (the gas mo- 
ving from the left to right) as its characteristic velocity and density. 

Since the formulation of the problem of stability of the stationary flow in question is 
the same as that in Cl. 21, we give, without further ado, the equations and the boundary 
conditions obtained as the result of linearization. It was shown in [Z], that the linearized 
equations of a one-dimensional, nonstationary flow of a perfect gas, can be written in 
the following ” characteristic ” form : 

L?+R 
(1.1) 
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D-L 
- =: azlR f apaL + a,$, 

DS 

Dt 
z = 0 

D+ 
-=;+(l:+A)$ $=$+(U- A); 
Dt 

Here t is time; R, L and 8 denote the nonstationary perturbations of the left and 
right Riemann invariants and of the entropy function, respectively ; D’ i Dt, D- / Dt 
and D / Dt are the differential operators along the characteristics of the first and se- 
cond family and of the particle trajectory ; rl/ and A are the stationary values of the 
stream velocity and the speed of sound. The coefficients aij are known functions of 
x and are proportional to JI’, where i?f = ri / A is the Mach number and a prime 
denotes a derivative with respect to 5. For a perfect gas we have 

M’ = J!I rz 5 (X - 1)M21 (1x1 F)' I.2 (W - 1) 

where x is the adiabatic ratio. 

(1.2) 

In accordance with (1. l), the times of propagation of the acoustic and entropic waves 
(R-, L- and &‘-waves) between the shock and the channel outlet (or in the opposite 

direction for the L-waves), are 

(1.3) 

In the present case for which 0 < U < A, i.e. the flow is subsonic when 0 < x < 
1, we have the inequality rl > z,.. 

The system (1.1) must be supplemented by the conditias formulated at the bounda- 
ries of the part of the channel in question (at x = 0 and 2 = 1). The conditions at 
5 = 0 which are obtained by linearizing the relations at the closing compressionshock, 
can be reduced to the following equations [Z]: 

R, = cp&+ - $Yz$, 8, = qr’L+ - $‘Yssr E,’ = FL+ - ~Yx, (1.4) 

(Y E (In F)i=, = 2 (M+2 - 1) M+‘/ [2 + (x - 1) M+z] M,) 

where x = 5, (t) represents the equation of the trajectory of the closing shock, a dot 

denotes the d~e~ntiation with respect to t , the coefficients cp, +, cp’, q’, p and B 
are known functions of x and M_, and the subscripts minus and plus denote the values 
of the parameters at x = 0 to the left and to the right of the closing shock, while Y 
is expressed in terms of M,’ in accordance with (I.. 2). 

As in [23. we impose the following condition of reflection at the channel outlet (where 
2 = 1): 

L = XR -I- X’S (J.. 5) 

Here the reflection coefficients X and X’ are assumed specified. The condition (1.5) 
connects the amplitude of the LJwave reflected from the outlet section with the ampli- 
tudes of the R- and S-waves arriving at this section. 

In [l, 23 the stability was analyzed using the quasi-cylindrical approximation in which 
the relative changes in the values of the functions R and L during the motion of the 
corresponding waves from the shock section to the channel outlet section (or in the oppo- 
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site direction for the L-waves) were neglected. From (1.1) it follows that this occurs 
in the case of a cylindrical channel when &f’ zz 0. In the case of a channel of varia- 
ble cross section and fixed &.f_ the error of the approximation in question, decreases 
as M’ --f 0. This follows from the fact that, in accordance with what was said before, 

all coefficients Uij in (1.1) are proportional to M’. 
When M_ j 1 , the conditions of applicability of the quasi-cylindrical approxima- 

tion become more and more stringent (in the case of restrictions imposed in the quantity 
M’), and #is is connected with two circumstances. First, the time zI of propagation of 
the L-wave along the channel increases, by virtue of (1.3), without bounds as M_ tends 

to unity. ConsequentIy,in order that the increase in the value of the left invariant be 
small compared with max (R, L, S) when the L-wave moves from the section o = 1 
to the closing shock, the following condition must hold: 

zr o&zl.%,s’ns~‘Ki 
(1.6) 

In the present case z, is of the order of unity, and the coefficients a,k and a,j have 
the same order of magnitude. Therefore the condition (1.6) or the equivalent inequality 
] IV’ J ezg (M_- I) ensures that the increments in the values of not only the left, but 
also of the right invariant, are small compared with max (R, L, S) . This does not how- 
ever imply the validity of the quasi-cylindrical approximation. In fact, the smallness 
of the increments in the values of the invariants J? and L as compared with max (R, 
L, S) implies that they are small compared with their values at z = 0, i. e, with R+ 
or L+, only in the case when R+, L+ and S+ are of the same order of magnitude. The 

possibility of violating this condition represents the second circumstance, and this must 
be kept in mind when using the quasi-cylindrical approximation. Let us compare the 
orders of the quantities indicated above in the case when M_ is almost equal to unity. 
To do this, we rewrite the relations (1.4), taking into account the expressions for the co- 
efficients cp, ‘p’, . . . in [2], and retaining in the expansions of these coefficients in terms 
terms of E z M-. - 1, only the principal terms. This yields the following expressions: 

R+ = - yE2L+ f 4 (Ic + ~)-2&‘f+rE2Xs 

s+ = Xye2L+ + 4xy (x + I)-lM+‘&3X, 

Is’ = 0.5 (x + 1)Lt + 2 (x + I)-‘M+‘&X, (y = 4 (x - 1) / (x -+- 1)) 

Integrating the last equation of the above system and restricting ourselves from now on 
to the case of the negative values of M+‘, we find that at sufficiently large t , x3 does 
not exceed L+ I EM+’ in its order of magnitude. This, together with the first two equa- 

tions of the system, implies that the maximum possible values of R+ and S+ are of the 
order of EL+ and e2L+ , respectively, The estimate of the magnitude of S+ remains 
valid also when the shock oscillates with a “moderate“ or a “high” frequency and x8 
has the order of L+. R+ however is of the order of EEL+. From all this and in accord- 
ance With (1. l), max (R, L, S) = max L +, while R+ is always smaller than L+. 

Thus the functions R+, L+ and S+ assume different orders of magni~de as M- -+ 1 , 
Therefore, to obtain the condition of applicability of the quasi-cylindrical approxima- 
tion we must inspect the coefficients Uij in more detail. Performing the necessary ma- 
nipulations we can show that a,, - EM’, and the remaining coefficients arj are of the 
order of iK’. This, and the estimates given above for R+ and S+ , imply that the vari- 
ation in the magnitude of the right invariant during the passage of the ~-wave from 
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the shock to the channel outlet is of the order of EM’&, and the variation in the mag- 
nitude of the left invariant during the passage of the L- wave along the channel in the 
opposite direction is of the order of ZI M’L+ + M’E-r~,. Since R+ can be of the order 
of ssL+, the conditions ensuring the smallness of the relative variations in R and L, 

and consequently the validity of the quasi-cylindrical approximation, can be expressed 
in the form of the two inequalities: I EMIL+ 1 < 1 K+ 1 - E” I fi+ I and I Jf’~*‘~l;+ 1 -q 
1 L+ 1 , which reduce to the following single inequality: 

IM’jeM_- 1 (1‘ 7) 

It was already shown that (1.6) and (1.7) are equivalent by virtue of the fact that the 
quantities M’ and asj are of the same order. 

In accordance with (1.2) M’ - F’ / (M - 1), therefore the quasi-cylindrical ap- 
proximation can be used only when the derivative F’ decreases with IM_ -+ 1 as 

VI_ - 1)2> and this restricts ex~aord~arily the feasibility of using this approach. On 
the other hand, in the case when the velocity ahead of the closing shock is transonic, the 
author of [5] gives some qualitative considerations on the possible flow instability under 
the conditions for which the quasi-cylindrical approximation predicts stability. This justifies 

the development of an approach, the applicability of which to all M_ > 1 would be 
restricted by the inequality 1 M’ [ < 1, the latter being weaker than (1.7). Such an 

approach which we shall call a “transonic” approximation, is developed below and based 
on the following concepts. 

We limit ourselves to the case in which the gas accelerates in the Lava1 nozzle ahead 
of the shock, since for this nozzle M_, and consequently M,, can have values as near 
to unity as required. In the stationary mode a saddle point corresponds to the minimum 
cross section of the nozzle, and the integral curve cor~sponding to the accelerating gas 
represents one of the separatrices of the field of integral curves. Taking this into account, 
we replace M’ for 0 < x ( 1 , by the constant AZ,‘, and neglect (by virtue of the 
assumption that M,’ is small) the variations in the values of all stationary gas parame- 
ters except for the differences A - U or M - 1 along the channel length. In ac- 
cordance with the estimates for R, and 8, and the coefficients aij appearing in the 

right-hod sides of (1.1) which were given above, only the second terms need be retained 
when 1 ,$f’ 1 < 2 and (M_ - 1) (( ‘i . Moreover, the corresponding term in the first 
equation is retained only in the case when R,, - F’L,, since it is only in such a situ- 

ation that the increase in the value of the invariant R governed by this term and being 
of the order of FM’L, is similar to, or even exceeds R,. If on the other hand .??+ - 
EL+, then it is simply immaterial whether this term, and incidentally the neglected 

term a,,R which in this case is similar to uas.L, are neglected. 
In accordance with all that has been said, the flow in question is described, in the 

transonic approximation, by the following system : 

D-L D+R 
-~-_L, x =b(l+ux)L, s(d)=W) 
Dt 

(1.8) 

5=x- u+t, b,=i/(u++A+), zl=6-11n(I-i-4, %=IJu+ 

u=A+[+($+- 1) - ~~~~~~~~I~+ 
b = A (M+-i)[(X--I)~~+2-21 M I M+’ 

+ 2kf+{(x-i)M+2+21 ” ==zy=-l 
6 = - .A,M+’ 



The above system was derived using the expressions for a,, and uz2 given in [Z]. 
Here we must stress the fact that the transonic approximation is in fact valid for any 

M_ when 1 111’ 1 < 1. If, however, the value of the Mach number ahead of the shock 
differs appreciably from unity, then the results of the transonic approximation will be 
indistinguishable from those of the quasi-cylindrical approximation. 

2, It can be shown that, just as in the quasi-cylindrical approximation [l, 21, the 
analysis of the stability of the flow described by the system (1.8) and the boundary con- 
ditions (1.4) and (1.5), can be reduced to the study of the behavior of L, (t) and .z, (t) 
as t +- 00. The above functions are defined by a system of two equations. The first of 
these equations is the third equation of (1.4) rewritten with the arguments included 

xs’ (t) = /JL,. (t) - /3Yz, (t) (2.1) 

while the second equation is an integro-difference equation and not a difference equa- 

tion as in the case studied in [2], and is obtained as follows. 
First we find L = L (z, t). Integrating the first equation of (1.8) along the c--char- 

acteristic which passes through the point in question on the st -plane, we obtain 

L (2, t) = L, [t + zI (z)l exp I-- azl (s)] (2.2) 

Here t + T/ (z) denotes the instant at which the characteristic intersects the closing 
shock (in the present approximation the characteristic intersects the straight line cz = 0). 

Since in the present case 1 - M (x) = (1 - M,) (1 + ax) we have, in accordance 
with the equation describing the c--characteristic, 

‘cl (32) = 6-l In (1 + az) (2.3) 

Now we use (2.2) and (2.3) to integrate the second equation of (1.8) along the c*- 
characteristic, from its point of intersection with the straight line .zz = 0 at the time 

t - rr (cc),, where rr (x) = XG, to the point with the coordinates x and t. This 
yields rT (2) 

R (cc, t) = R, [t - ~(31-b \ [I + $$]‘L+(t-w)+e+ (2.4) 
0 Y=l--$) 

The formulas (2.2) and (2.4) hold, in particular, in the section of the channel outlet (at 
z = I). Substituting R (1, t) and L (1, t) ,and the function S (1, t) which in 

accordance with (1.8) is equal to 8, (t - T$), into the condition of reflection (1.5) 
and eliminating R+ and S, from the resulting expression with the help of the first two 
equations of (1.4), we arrive at the required integro-difference equation 

L, (t + zl) e-“l = x 
i 
‘pL+ (t - z,) - $Yz, (t - tr) + (2.5) 

1 

z& (1 + az)‘L+ 
s C 

t - Tt, + z,z + 
0 

$ In (1 + m)] dz} + 

x’ b-a, (t - z,) - VYG (t - Ts)l 
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When a = b = 0 , Eq.( 2.5) becomes a corresponding difference equation of the quasi- 
cylindrical approximation [2]. 

The characteristic equation of the system (2.1) and (2.5) the roots i, of which deter- 
mine the behavior of the eigenfunctions L, (t) = L” oxp At and z, (t) = X” exp At 
where L” and X” are constants, and therefore also the evolution of the solution at large 
t. has the form 

H (A) z (A + py)e? - X [‘p (h + (3Y) - p$Y + z,b (h + (2.6) 

f3Y)l (h)le-AT - x’ Icp’ (h + /3Y) - p$‘Yle-h+’ = 0 

I (h) = 5 (1 + cm) exp [h (5 - 1) z, + (h - a) zI (s)] dz 
0 

-c = Zl + fr, z’ = T[ + z, 

The integral 1 (A) can be expressed in terms of the degenerate hypergeometric func- 
tions, Performing the necessary manipulations which include the use of (2.3) and of the 

Kummer’s formula [6]: @ (a, y; r) = dl (y -a, y; - r) exp r, where @ (a, y; r) 
is a degenerate hypergeometric function, we can show that 

~(~I=,(,,~,+,)[(1 +a)%h=-aYD(1,3+ A+; -d-g)- (2.7) 

a) (1,3+V; -y 

In addition to the results obtained by investigating the characteristic equation (2. 6) 

with the function Z (A), given by (2.7), we have also obtained the proof, as we shall 
see below, for a somewhat simpler method of approximate computation of the integral 
Z (A) and this now follows. The difficulty encountered in computing Z (h) is caused by 

the complexity of the function ZI (x) given by (2.3) and such that t[ (0) = 0 and tl (1) = 
‘tl. If we replace the curve (2.3) by the straight line ZI (z) = z~z, then simple transfor- 

mations yield 
Z (h) = y-z {cc - y + [(t + a) y - a] eY} ewh7r 
y = y (h) = htr + (h - a)rl 

(2.8) 

As we have already said, the study of stability is based on constructing the Nyquist 
curves (the ” D -subdivision” method) and on asymptotic analysis valid for 1 h I > 1. 
Without going into details which are, on the whole, the same as those in [Z], we shall in- 
didicate just three aspects. 

First we shall deal with the position of the region of stability which is represented by 

the D (0) region in the D -subdivision method, Setting in (2, 6) x = x’ = 0, we arrive 
at a characteristic equation with. a single root 1\, = - @Y. Computations in [l] show 
that g is always positive. From this it follows that when the channel widens (Y > 0) , 
the region of stability in the xx’ -plane occupies a neighborhood of the coordinate origin. 

The second aspect is connected with the asymptotic analysis of the roots of the charac- 
teristic equation when 1 h I> i.This analysis is carried out in the same manner as in the 
quasi-cylindrical approximation [2] and shows, that when I h I > 1 , the region of stabi- 
lity is a rhombus I x’p _c x’cp’ I < e-aTl 

The last aspect concerns the separation of the real and imaginary parts of H (i.j, which 
is necessary for the construction of the Nyquist curves. Such separation was performed 
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on a computer, and FORTRAN was used for programing, which was essential in view of 
the complexity of the functions appearing in H (A). 

3. Let US pass to the examples of constructing the regions of stability in the xx’ - 
plane of the reflection coefficients. Some of the results are shown on Figs, l- 4 where 
the solid lines denote the boundaries of the regions of stability obtained in the transonic 
approximation, and the dashed lines refer to the quasi-cylindrical approximation. All 

Computations were carried out for a flow of a perfect gas with x = 1.4. Figures 1 and 2 
show the boundaries of the region of stability in the xx’ -plane for M+’ = - U.1 and for 

various values of CT-, i. e. the planes U_ =z COIM intersect the surface defining the re- 

gion of stability in the C’-xx’-space, each section denoted by the corresponding value of 

CL. The flow is stable for X and X’ corresponding to the points inside the relevant po- 
lygons. Similarly,Figs. 3 and 4 show the boundaries of the regions of stability for CT_ = 
1.1, plotted for various values of M .+’ which again accompany the corresponding curves. 
On inspecting Figs. 1 - 4 we see, that in both approximations, transonic and quasi-cylin- 
drical, the size of the region of stability increases, for a fixed M+’ , as ii_ approaches 
unity. As expected, the difference between the solid and the dashed lines increaseswith 
decreasing u_ and increasing M+‘. For a fixed 111+’ we see, that the increase in the 
value of U_ is accompanied by a spontaneous transition from the results of the transonic 
approximation, to the results of the quasi-cylindrical approximation. The same happens 
if we fix U_ and decrease the value of M+‘. We note that the results depicted on Figs. 
1 - 4 by the solid lines, are obtained with the use of the formula (2.7). The results ob- 
tained for the approximate formula (2.8) coincide with the previous ones within the range 
of the graphical representation, for the values of a < 4 . The divergence however in- 
creases with increasing cz and becomes very noticeable when CL > 6 . 

From the data shown above it follows that athough the numerical results of the quasi- 
cylindrical and the transonic approximation diverge from each other when the value of 
the Mach number ahead of the closing shock tends to unity, the fundamental arguments 
made in [1, 21 within the framework of the quasi-cylindrical approximation, remain un- 
changed, In particular, we retain the arguments concerning the stability of a flow with 
a closing shock in a diverging section of the channel (Y < 0, A!+’ > 6) provided that 

the conditions of the absence of reflection, constancy of pressure or constancy of the 
Mach number are prescribed at the channel outlet. Since the transonic approximation 

is based on the smallness of the derivative M+’ = (d-If ; dr),+, where the distance be- 
tween the shock and the channel outlet is taken as the unit length, it follows that it can 

be used e. g. in the case when the shock lies near the outlet section. In this connection 
we note, that the tendency to instability which was discovered for the present case in [S], 
was caused by the improper manner of neglecting the nonlinear terms in the Taylor ex- 
pansion in 5 of the solution. 

We conclude with an important remark. When the equations are linearized, the coef- 
ficient (U - a) accompanying dl; I dz is replaced by U - A. When the flow is tran- 
sonic, such a substitution is valid only in the case when the perturbations in the values 
of the corresponding parameters are small compared with the difference U -- A . This 
imposes a very rigid limitation on the application of the transonic approximation in the 
cases when the perturbation amplitude is determined by the conditions of the problem. 
Investigation of the stability however is a different matter. Here we have to analyze the 
behavior of arbitrarily small perturbations the amplitude of which, at t = 0, can be 
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chosen to correspond, in particular, to the conditions of app~cabili~ of the equations 
used. If the flow is stable, then the perturbations will not increase and the conditions 
indicated will also be observed at t >O. Thus the arguments concerning the stability 
in its classical sense made on the basis of utilizing Eqs, (1.1) or (1.8) are valid outside 
the range of their dependence on the magnitude of the difference U-A, provided that 
thelatterdoesnotvanishatO<r<i, 

We conclude by expressing our appreciation to V. T. Grin’ and N. I. Tilllaeva for the 
valuable discussions and help. 
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We consider nonlinear wave motions in chemically active, gaseous mixtures the 
change in the composition of which is governed by an arbitrary number of reac- 
tions taking place. We impose on the equations of state the condition ensuring 
that the frozen and the equilibrium speed of sound have similar values. We carry 
out an asymptotic analysis of the initial system of Euler equations together with 
the chemical reaction equations. As the result, we obtain an approximate system 
of equations for the velocity of the medium particles, and for the reaction com- 
pleteness vector the order of which is equal to the number of the relaxation pro- 
cesses plus one. 

1. Thermodynamics of the system, We assume that N reactions take 
place in the flow of a chemically active gaseous mixture. The change in the composi- 


